	Arginine & sepsis	Potassium & hypertension	Copper & Alzheimer's
Chemistry	Positively polar charged	K+, Atomic #19, resp. for oslmolarity of	3 rd most abundant micromineral. First row
	AA	intracellular fluid.	transition metal.RDA 900 μ g/d.
Di li	$C_6H_{14}N_4O_2$	Decreases Ca ²⁺ excretion.	Seafood & liver, legumes, dried fruits, nuts.
Digestion	Via PRO digestion in mouth, stomach, and	AI 4700 mg/d. Bound to CHO or Pro.	Begins in the stomach with HCl. HCl activates
	small intestine.	Digestion begins in mouth w/salivary amylase to	pepsinogen which cleaves denatured proteins> enhances release.
	End products in small intestine include peptides and free AA (including arginine).	hydrolyze α -1,4 glycosidic bonds. In stomach, chem. & mech. Dig. Finishes in SI with	Pancreatic and duodenal proteases further break
	peptides and free AA (including arginine).	pancreatic amylase & disaccharidases.	down protein releasing copper.
		parereatic amyrase & disaccharidases.	down protein releasing copper.
Absorption	Absorption into enterocyte in proximal SI via	Majority of K+ absorption in SI (duodenal &	Trace amounts absorbed by the stomach.
	an AA transport system (does not req. Na.)	jejunal mucosa). Minor in colon. 85% of	Absorption by enterocytes occurs via active
	~60% of <u>dietary intake</u> absorbed.	dietary intake absorbed by passive diffusion and W^{+}_{+} (17)	carrier-mediated transport. High copper>
	Other 40% broken down into ornithine,	K ⁺ /H ⁺ -ATPase pump.	passive diffusion. Absorption of Cu piggybacking on AA?
	citrulline, proline, CO2, or urea.		Enterocyte: Cu transported by chaperones.
			Enterocytes store in metallothionein. Cu
			transported to basolateral membrane. Active
			transport across basolateral membrane.
Transport	Portal blood. Portal vein.	K diffuses basolateral membrane. Enters portal	Albumin, transcuprein, & certain AA.
		circ. Travels to liver, heart, and body tissue.	To liver thru portal circ. Hepatocytes absorb Cu
		Entry to non-intestinal cells by active transport.	via facilitated diffusion. In liver, stored in metallothionein.
Metabolism	Important in:	Generation of membrane potential (Na ⁺ /K ⁺ -	Cofactor (e.g., ceruloplasmin, SOD1, Cyt c oxicase.
	Growth & differentiation; Urea synthesis Removal of N from urea cycle	ATPase pump). Acid/base balance (formation of bicarbonate,	Ceruloplasmin transports Cu to extrahepatic
	Syn. of creatine; Formation of collagen.	spares Ca^{2+} from being mobilized).	tissues.
	NO formation (for vasodilation, angiogenesis,	Prevents/reduces hypertension by promoting	Ceruloplasmin is taken up by extrahepatic cells
	adequate O_2 for wound healing.)	natriuresis, reducing peripheral vascular	by channel proteins or protein transporters.
	Formation of arginine	resistance, inhibiting free radical formation.	
	Involves kidney, liver, intestine.		
	Arginine is syn. In kidneys from aspartate &		
	citrulline.		
	The liver uses arginase-I to breakdown		
Excretion	arginine to urea & ornithine.	Primarily the kidneys (aldosterone).	Most by biliary excretion. Some Cu is lost
Literetion			through bodily fluids, hair, and nails.
Physiological Effects	Conditionally essential AA	Hyperkalemia (cardiac arryth., cardiac arrest).	Menkes disease, Wilson's disease.
		Hypokalemia (mulcular weakness, nervous	Amyloid- β peptides (plaques) in brain tissue
		irritability, glucose intolerance	with Cu bound to it through His/Cys.
			A β complexes can produce H2O2 from
			molecular O2 in presence of precursors.

	Arginine & sepsis	Potassium & hypertension	Copper & Alzheimer's
Chemistry			
Digestion			
0			
Absorption			
1			
Transport			
1			
Metabolism			
Excretion			
Physiological Effects			
J 6- 000 200000			